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1 Motivation, Problem definition and Goal of the project

1.1 Motivation

Making robots mimic humans as closely as possible has been one of the main areas of
research in the recent decades. Our aim with this research is to create a framework that facilitates
robots to learn faster and reduces human effort to teach performed demonstrations. For that
purpose, we considered to use Learning from Demonstration as our starting point. Learning from
demonstration's main goal is to help teach robot how to do some tasks in an easy and faster way, by
learning from a human demonstration. Thus teaching robots tasks which are dangerous or difficult
for humans to perform due to the prevailing conditions. It is also essential for scenarios where
complete automation is impractical, and complex motions are subjected to frequent alterations.
Thus, the need for updating the learned motion frequently, can be easily realized by learning
from Demonstration.

In traditional robot programming, a human programmer has to manually implement the desired
behavior to specify how the robot should act and respond to a certain environmental state.
Whereas in the case of Learning from Demonstration, the robot can easily mimic a human user
through a communication system. While there are many promising current techniques (e.g.
Kinesthetic Control [1], Virtual Reality devices [2], and haptic gloves [3]), each of them suffers
from some limitations in applicability, such as requiring presence of human being, expert
robotics knowledge, and costly equipment.

1.2 Problem Definition

The goal of this project is to study the feasibility of robotic arm manipulation by capturing the
complex human motion from a simple RGB camera/ or through pre-recorded videos and
transferring to robot.

The internet contains a massive corpus of rich and diverse human hand videos. Our solution
can use this data to learn various human motion trajectories and transfer this as a robot arm
trajectory that is smooth, safe, and similar to the guiding demonstration.

We demonstrate that it enables previously untrained people to teleoperate a robot on various
manipulation tasks.

In this paper, we present a low cost, gloves free, marker free solution, to teach tasks to
Franka Emika Panda Robot through Learning from Demonstration from RGB data.
Furthermore, it can be implemented by a remote, untrained operator, by using a simple
RGB Camera.

We demonstrate the usability and versatility of our system through two different manipulation
tasks.



2 Technical Background and Methodology

2.1 Related work

Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans on YouTube
[4]

The recent research most relevant to our work is the real-time teleoperation of a Robotic Arm
through a RGB Camera. In this solution, they divided the complete process into two
subsystems. The first subsystem uses computer vision algorithms trained to estimate 3D human
poses from 2D images.The second subsystem uses a motion-retargeting algorithm to generate
a robot hand-arm action that is consistent with a given human pose. The researchers trained a
deep human-to-robot hand retargeter network, by taking publicly available data from the
internet, to convey the motion of the whole arm and hand to the robot.

Figure 1: An operator completing dice pickup task while watching the robot through a video
conference [4].

Teleoperation of Robotic Arm using Depth Sensor [5]

Another simillar approach is the teleoperation of a robotic arm using the Microsoft Kinect sensor.
Kinetic is a RGB-D camera, which can be applied in robotic control as a visual device, so the
robot can recognize movement from humans and produce visual interactions between humans
and robots.

The researchers controlled the whole robotic arm (instead of just end-effector) by using inverse
kinematics on human arm and finding the various angles and positions.

In their paper it is mentioned that the use of Microsoft Kinetic leads to false coordinates in case of
occlusion of a part of the body.



2.2 Learning from Demonstration

Learning from demonstration, also known as "programming by demonstration”, "imitation
learning" , and "teaching by showing" received significant attention in automatic robot assembly
over the last 20 years [6]. The goal was to replace the time-consuming manual programming of
a robot by an automatic programming process, solely driven by showing the robot the assembly
task by an expert.

Usually researchers tackle LfD by two methods, which differ on how the human teaches the
demonstration to the robot. On the one hand, there is Kinesthetic teaching, i.e. force-based
manipulation tasks, which require a human to physically move the end effector, and thus the
motion is learned by the robot [7]. On the other hand, through training a deep network by
feeding it visual data of performed motions [4].

Our solution implements Learning from Demonstration by capturing the human motion from RGB
videos and transferring the end effector position to the robot. These videos can be obtained either
though online recording or from existing internet videos.

3 Conception and Implementation of the Project

3.1 Methodology and Workflow

The workflow was divided into three main tasks - (i) human motion tracking, (ii) learn a trajectory
from the tracked motions, and (iii) transferring this learned trajectory on the Gazebo Simulator.

For tracking human motions, MediaPipe Pose [8] was used. The coordinates of a landmark in
the right hand were recorded for a short period of time, wherein the desired motion was
demonstrated by the user. This process was repeated three to four times for each motion, each
of which produced a slightly modified trajectory for the same motion shape.

As the second step, we used Dynamic Motion Primitives (DMPs) [9, 10] to learn a trajectory
from the various input trajectories for a single motion. By using regression models, we achieved
a smooth trajectory. Through the use of DMPs, one can get a learned trajectory which can be
scaled, shifted and oriented as required. One can input the desired initial and end position, and
from the different recorded trajectories, we get a learned trajectory scaled to the desired initial
and end position.

Lastly, we executed this learned trajectory on the Frank Emika Gazebo simulator [11] by using a
self-made cartesian impedance controller.

This complete operation was then repeated and tried out for various complex motions.
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Figure 2: Workflow of the Research

3.2 MediaPipe Pose

MediaPipe Pose [8] is a ML solution for high-fidelity body pose tracking, inferring 33 3D
landmarks and background segmentation mask on the whole body from RGB video frames.
It utilizes a two-step detector-tracker ML pipeline, firstly locates the person/pose
region-of-interest (ROI) within the frame. Secondly, it predicts the pose landmarks and
segmentation mask within the ROI using the ROI-cropped frame as input.

Figure 3: Human Motion Tracking Results by MediaPipe Pose

MediaPipe was chosen over other motion tracking softwares, as it gave a good approximation of
the z coordinate compared to other publicly available softwares, such as AlphaPose [9]. To
control the end effector of robotic arm, it was decided to use the trajectory followed by the palm
of the right hand of the user, instead of using inverse Kinematics to control all joints of robotic
arm separately.
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Figure 4 : Sample Trajectories recorded using MediaPipe Pose

3.3 Dynamic Motion Primitives

DMPs [10] are a proposed mathematical formalization of primitive actions, which when
combined can form complex human motions. For each dimension, the activations learn the
weights according to the input trajectory, and thus the trajectory can be easily scaled and shifted
to coordinates while still maintaining its original form and structure.

DMPs add on a forcing term f that will let us modify the point attractor dynamical trajectory.:

Y= Ufy(.ﬁy(g —y) — 'U) + f

where Y is our system state, g9 is the goal, and < and 5 are gain terms.
The crux of the DMP framework is an additional nonlinear system used to define the forcing

function f over time, giving the problem a well defined structure that can be solved in a
straight-forward way and easily generalizes. The introduced system is called the canonical

dynamical system, is denoted £ , and has very simple dynamics:

T = —p.2

The forcing function f is defined as a function of the canonical system:

N_ ‘l-'iwi
flz,9) = Z‘w#i(g — Yo)
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where Y0 is the initial position of the system,

U; = exp(— hi(z — ¢;)?)
v,

and Wi is a weighting for a given basis function

So our forcing function is a set of Gaussians that are ‘activated’ as the canonical system £
converges to its target. Their weighted summation is normalized, and then multiplied by the

:E(g - yo) term, which is both a ‘diminishing’ and spatial scaling term.
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Figure 5 : Figure showing how the weights in a specific coordinate can be adjusted to get a learned
trajectory

In our project, we were able to obtain a smoothened, learned trajectory through regression from
the previously recorded trajectories of the same motion. This learned trajectory could adapt
itself to the desired initial- and end location. For instance, in a "pick and place object" scenario we
could use the object starting point as the initial position and the place location as the end position
for the DMP.

During the research, we came across certain drawbacks of using DMPs to get a trajectory. For
example, repetition of the same motion is required to acquire a more accurate and smoothened
shape of learned trajectory. Thus, leading to real time teleoperation being a difficult and
inaccurate target. Secondly, the orientation of the motion can not be ascertained if a 2D Motion
is given, and thus getting a learned trajectory with the desired starting- and end point, but not
the desired orientation.
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Figure 6: In Red, Green, and Dark Blue, trajectories recorded using MediaPipe Pose for a C-shaped
Motion. In light Blue, learned trajectory obtained by using DMPs with initial location as (0, 0, 0) and
end location as (0.5,-0.5, 0.9) - (a) Side-view and (b) Top-view
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Figure 7: C-shaped motion trajectory scaled to initial location as (0,0,0) and
End location as (1,1,1)

3.3 Franka Gazebo Simulator

Franka Gazebo [12] is the simulator for Franka Emika panda arm. It provides visualization for
the robotic arm in Gazebo as well as RViz. It also offers various pre-defined controller
implementations, such as Impedance controller, Force controller, and Velocity controller.
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Figure 8: Franka Panda arm simulation - Gazebo Figure 9: Franka Panda simulation in RViz

The workflow for transferring the learned trajectory to the Frank Panda arm Simulator was as
follows. The first step was designing our own Impedance controller for the robotic Arm, which
would follow the given trajectory. Then we tried out different parameters for the conditions, for
going from one point to another, and time spent on each point in path.



4 Qualitative Results and Comparison to the original goals

4.1 Qualitative Results

We carried out the complete procedure for various motions and for different starting- and end
points. Here we present the results for two such motions.
Firstly, the user performed a S-motion.
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Figure 10: (a) S-motion trajectory as recorded by MediaPipe, (b) Smooth red - Learned trajectory
with initial point - (0.0, 0.3, 0.1) and end point - (0.5, 0.0, 0.6). This trajectory was transferred to the
Gazebo, (c) top view- Smooth red - Learned Trajectory obtained with help of DMPs -initial point - (0, 0,
0), end point - (1, 1, 1) Multiple dotted Trajectories - recorded trajectories, (d) side view

The links to the videos of the user performing the above motion as well as the motion being
executed on the Gazebo Simulator, can be found in the supplementary material videos.
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4.2 Partial Occlusion

Partial occlusion refers the scenario where part(s) of the human is occluded by objects in the

environment, which could lead to the human motion tracking system returning us false
coordinates.

As our solution was using a landmark from the right palm to get the trajectory, we tried holding

objects of different shapes and sizes, to see the results during partial occlusion.
MediaPipe’s results are not affected much if some parts of the hand are not fully visible.

As long as most of the arm is still visible it can still roughly extrapolate the location of the palm,

providing us an accurate trajectory. In rare cases, even if some anomalous point crept in, the

use of DMPs minimized its effects in the learned trajectory. Thus picking and placing of objects

can be easily performed with this solution.

Figure 11: MediaPipe results when user is moving an object

The second motion was picking and placing of a bottle.
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Figure 12: (a) Bottle-pick trajectory as recorded by MediaPipe, (b) Smooth red - Learned trajectory
with initial point - (0, 0,0.1) and end point - (0.2, 0, 0.6). This trajectory was transferred to the Gazebo,
(c) top view- Smooth red - Learned Trajectory obtained with help of DMPs -initial point - (0, 0, 0), end
point - (1, 1, 1) Multiple dotted Trajectories - recorded trajectories, (d) side view
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5 Conclusion

5.1 Conclusion

To summarize, the results showcased a variety that were in par with our initial targets.

Firstly, human pose estimation from MediaPipe was accurate, gave good results even in cases
of partial occlusion, and can be used for manipulating robotic arms. Secondly, learned
trajectories obtained using DMPs can be used for simulation, although the orientation of the
motion can not be ascertained if a 2D Motion is given. As the changeable parameters are only
the initial and goal location, it is tough to determine a single, fixed orientation of the entire
motion. Lastly, the implementation of the trajectories on the Franka Gazebo simulator behaved
as was expected and showed promising results.

5.1 Future Works

To further improve our system, we propose some developments which could make the system
more accessible. To begin with, controlling opening and closing of the gripper through hand
gestures of the other hand using a simple publisher script could be used to real-life objects.
Using computer vision algorithms, we could detect object location and automatically select that
as the start location for the learned trajectory.

Furthermore, we could improve the transferability from human to robot motion, by not only
focussing on the end effector, but also the other joints of the robot so that the whole motion is
similar to the arm.
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