Fine-tuning Pre-Grasps through 3D Object
Generation

Almutwakel Hassan Chaitanya Chawla Eyob Dagnachew
akhassan@andrew.cmu.edu cchawla@andrew.cmu.edu edagnach@andrew.cmu.edu

Keywords: Latent Diffusion Model, 3D Reconstruction, Pre-Grasp Generation

1 Introduction

Three-dimensional (3D) point clouds have emerged as a foundational representation for numerous
applications in computer vision [1], [2], robotics [3], and graphics [4], [5], including 3D scene re-
construction, autonomous navigation, and digital human modeling. As interest in high-fidelity 3D
generation grows, recent advancements in generative modeling have shown that deep generative
models, particularly diffusion models, can produce high-quality 3D content with strong generaliza-
tion capabilities.

Despite the success of diffusion models in 2D image synthesis, directly applying them to 3D data
such as point clouds remains challenging due to the unordered, sparse, and permutation-invariant
nature of point cloud representations. Through this work, we tackle the problem of improving
robot pre-grasp generation by fine-tuning our model on 3d assets generated by a diffusion model.
We propose a latent diffusion model [6] that encodes 3d shapes into compact volumetric 3D latent
embeddings and performs denoising in this space to generate high-quality voxel shapes.

In this project, our goal is to first formulate a lightweight, resolution-agnostic latent representation
for general voxel generation synthesis. Then, we introduce a framework to fine-tune a bootstrapped
grasp generation model on a dataset of 3d generated objects and their respective pre-grasps. Our
approach improves the model by tuning on unseen, diverse objects making it robust during real-
world deployment.

2 Task and Dataset

2.1 Task Description

In this work, we implement a 3D Latent Diffusion model from-scratch including an attention-
based UNet model for denoising. The implementation is built using foundational PyTorch layers
and publicly accessible OpenAl Neural Network modules for attention mechanisms. The goal is
to introduce novel design choices, differentiating our approach from existing methods, potentially
leading to a unique and innovative model.

2.2 Dataset

We use 3D assets curated from Objaverse [7]. We train with ~ 50 annotated daily-life objects, such
as sofa, sword etc. Most of our objects are low-poly models to facilitate faster training. Fig 5 in the
appendix shows some of the objects used in our training.

Our grasp-generation model is pre-trained on the ACRONYM Dataset, consisting of 8872 objects
from ShapeNET and roughly 2000 grasps for each object.

‘We describe our model in detail in section 4.2.

Course Project, 10-623 Generative Al, Spring 2025, CMU

3 Related Work

3.1 Latent Diffusion Models

A clear challenges arises when scaling usage of diffusion models in pixel space. computational
expenses being to arise and pose a serious issue for serious applications of diffusion models. Large
strides were made to address this through [6], [8], which proposes a shift in the dimensionality in
which a diffusion model is operating in. Through the use of autoencoders, the paper introduces the
idea of having the diffusion model operation on the latent representation of pixels instead of on the
pixels directly.

3.2 3D Reconstruction

Ren et. al. [9] approaches the task of generation of 3D objects through sparse convolution networks
to represent and generate 3D shapes. It relies heavily on hierarchical voxel-based latent diffusion
through a VAE encoder/decoder model. Chen et. al. [10] builds on the approach of [9] by focusing
on the efficiency of the latent space. Sample complex regions of a 3D model and apply a targeted
attention mechanism to capture structural detail. However, a key difference between the two models
lies in how DORA operates in point-cloud space as opposed to voxel space.

Xiang et. al. [11] proposes a novel latent representation for 3D generation. While not operating on
voxel grids, it’s unique approach to hierarchical latent spaces presents valuable ideas for structured
modeling. More roughly related, [12] trains Neural Radiance Fields in a learned latent space using a
VAE. compressing complex 3D scenes into low-dimensions embeddings, it facilitates scalable neural
rendering, it’s methods of latent space modeling can inform our own VAE-based voxel compression
and representation.

3.3 Grasp Synthesis

Grasp synthesis is a major challenge in robotic manipulation. Along with the difficulty of finding a
precise location for grasping, the model needs to ensure stable and robust grasps, such that the robot
can manipulate the object without it falling. Most of the related works differ primarily on the dataset
they choose. There are two schools of thought when generating datasets for pre-grasps. One set of
datasets [13], [14], [15] analytically compute the feasibility and quality of the graph using force-
closure methods. The other set [16] tests the sampled pre-grasps directly in simulation by adding
various force pertubations. Furthermore, previous works such as [4], [17] approach this challenge
by training with semantic labels. However, in our project, we leverage a 2D segmentation model to
extract relevant objects from the scene and generate grasps on them.

4 Methods

4.1 Baseline

Ren et. al. [9] employ a hierarchical voxel latent diffusion model to generate high-resolution sparse
3D voxel grids. It first trains a sparse structure VAE which learns a compact latent representation
for each level of the hierarchy. It then trains a latent diffusion model to generate each level of the
hierarchy conditioned on the coarser level above it. At inference time, they run each diffusion model
in a cascaded fashion from coarse to fine. They leverage the decoder of the sparse structure VAE at
inference time to generate high-resolution voxel grids. Fig 8 shows their method. We show in-depth
baseline results in the Appendix C as well as the model architecture used by X-Cube.

4.2 Our Method

In the following section, we describe the main methods that are adopted in our project:

Point-
cloud

Generated
3D asset

U-NET based
' Diffusion
model

Conditioning

“Old
rustic
hammer”
Text
Dense
g::;::tse:s Point cloud

Figure 1: Our Model Architecture

4.2.1 Model Architecture

Our architecture builds upon a combined framework inspired by both XCube and TRELLIS, incor-
porating both 3D convolutional autoencoders and attention-based 3D UNets within a latent diffusion
setting. Initially, a 3D convolutional VAE compresses high-dimensional voxel grids into a lower-
dimensional latent space, capturing significant structural features at reduced resolutions (e.g. 323
compressed to 8%). The diffusion process then occurs within this latent space using a 3D UNet ar-
chitecture that employs both convolutional and self-attention blocks, efficiently modeling local and
global structural features. The attention modules integrate positional embeddings and hierarchical
spatial information, enhancing the network’s ability to model complex spatial dependencies effec-
tively. Our framework emphasizes efficiency, using sparse convolutional techniques adapted from
XCube to manage voxel sparsity, particularly critical at lower resolutions.

Figure 1 illustrates our detailed architectural design.

4.2.2 Text and Image Conditioning

We implement robust text conditioning to facilitate precise and meaningful 3D object generation
from textual prompts. Textual inputs are encoded using a pre-trained CLIP model, which produces
embeddings that capture rich semantic information. These embeddings guide the diffusion model
through cross-attention conditioning in the UNet layers at multiple scales. This conditioning ensures
that the textual semantics are heavily involved in the denoising process, which enables accurate
translation from text descriptions into the 3D voxel structures.

In addition to text, we utilize image conditioning to enhance the precision of generated 3D voxel out-
puts based on visual inputs. Image conditioning is implemented using a pre-trained vision-language
transformer, DINOV2, as used in TRELLIS, which extracts rich visual embeddings from input im-
ages. These visual embeddings condition the diffusion model similarly through cross-attention
mechanisms within the UNet, similar to how text conditioning is added. This conditioning allows
the model to leverage detailed visual context, ensuring fidelity between input images and generated
3D representations.

4.2.3 Text to Image to 3D

Despite the success of text conditioning models and its successful usage in text-to-3D, image-to-3D
often finds more success due to its ability to ground 3d generations in image inputs. The inputs
provide more information, which reduces the level of creativity needed in the model. For text-to-
3D, the TRELLIS authors advise that text to image, followed by image to 3D is a much more robust
pipeline, due to text to 3D models having limited creative capabilities which are bottlenecked by 3d
dataset limitations.

4.2.4 Classifier-Free Guidance

Classifier-Free Guidance (CFG) significantly enhances the fidelity and alignment of generated voxel
outputs with the conditioning inputs, and enables fine-grained control over generation quality. Dur-
ing training, we occasionally omit conditioning information, allowing the model to learn both con-
ditional and unconditional generation distributions. At inference time, guidance scaling factors are
introduced to interpolate between conditional and unconditional predictions dynamically. This ap-
proach allows adjusting the intensity of text and image conditioning, balancing creativity and fidelity,
resulting in more accurate and visually coherent 3D generations.

Classifier-Free Guidance adjusts the diffusion model’s prediction by interpolating between condi-
tional and unconditional outputs at each denoising step. Let €g(z;, c) be the predicted noise at
timestep ¢ conditioned on input ¢, and (2, () the unconditioned prediction. The final guided
prediction is:

o(zt,¢) = ep(z,0) + s - (eg(2e,¢) — €g(2t,0))

where s is a guidance scale hyperparameter. This expression is applied during each denoising step
to amplify the influence of the conditioning input.

4.2.5 Sharp Edge Sampling (SES)

Chen et. al. [10] introduces Sharp Edge Sampling to enhance reconstruction of 3D shapes, by
focusing on capturing fine-grained geometric details often missed in uniform sampling methods.
Salient Edge Detection: Given a triangular mesh, SES identifies salient edges by computing the
dihedral angle between two adjacent faces. If the given angle:

0;; = arccos(n;.n;)
is greater than a given threshold &, then the edge is considered salient.
Importance Sampling: From the set of salient edges ¢, the method collects unique vertices to
form a salient vertex set V. If |V;| > N, where Ny is the desired number of salient points, then we
downsample V; using Farthest Point Sampling. Otherwise, we uniformly sample more points along
the salient edges €,

4.2.6 Grasp synthesis
For synthesizing grasps from a given RGB-D input, we fine-tune Contact-Graspnet [18] on a new

dataset, containing our generated 3D assets and grasps generated from Contact-Graspnet.

5 Experiments
5.1 VAE Ablations

Our VAE iterative development resulted in ablations between two main final implementations of the
VAEs we used.

Implementation 1 was heavily inspired by XCube’s VAE implementation but adapted to our dense
representation. It includes attention at the bottleneck, two 3d convolutions at each resolution level,
average pooling for downscaling, and a sophisticated mask learning layer for upscaling.

Implementation 2 has one convolution per level instead of 2, and does simple pooling downscaling
and unpooling upscaling. It adds sliding window attention at the very end for detail improvements.
Otherwise it matches the architecture of version 1. Implementation 2 was found to perform signif-
icantly better qualitatively and quantitatively, resulting in sharper outputs as opposed to blob-like
ones. It also was 4x more parameter efficient, resulting in major efficiency and memory gains.

Figure 2 shows the two VAE architectures and the results obtained from both the architectures.

Left: Ground truth, Right: Reconstruction

V1: X-Cube-based approach
Down Block e Up Block Y

3D Paooling Self 3D
Conv | [Downscaler| | Attention Conv
| [——
3x

3x

-

V2: Sliding Window Attention approach

: /~ DownBlock
3D | | Pooling Self US‘"‘PI'ie \2:“";"9
- npooling ndow
w w Conv | Downscaler| | Attention e ttontion
3x 3x

Figure 2: VAE Ablations and their results
5.2 3D Asset Quality

To evaluate the quality of our generated 3D assets, we adopted the GPT-4V-based human-aligned
evaluation framework proposed in Wu et al. (CVPR 2024). This framework enables scalable, inter-
pretable, and holistic comparisons between models using rendered RGB and normal maps. Specifi-
cally, we assessed our model across five key metrics:

* Text-Asset Alignment — How well the generated 3D object reflects the semantics of the
input text prompt.

* 3D Plausibility — Whether the shape is structurally coherent and could plausibly exist in
the physical world.

» Texture-Geometry Coherency — The consistency between geometric structures and tex-
ture patterns, such as textures aligning properly with object surfaces.

» Texture Detail — Clarity, sharpness, and realism of the textures rendered on the asset.

* Geometry Detail — The complexity and fidelity of the 3D shape’s structure, including fine-
grained features.

We performed pairwise comparisons using GPT-4V with customized prompts and rendered views,
following the methodology described in the paper. GPT-4V was able to provide both a selection
between models and natural language explanations for its choices. Each comparison result was
aggregated using an Elo rating system, allowing us to holistically rank models across the five di-
mensions. This evaluation allowed us to bypass the need for ground truth 3D data, which is rarely
available for generative 3D tasks, while maintaining alignment with human judgment.

5.3 Inference Time and Model Size, Device used

Our model displays compactness and efficiency when compared to our XCube baseline, this is
reflected in both it’s size and runtime characteristics. We trained and evaluated the model on an

Color-Geo, Alignment, Plausibility, Geometry and Texture
Color-Geo

= ProlificDreamer -
1500 3 -

— InstantaD B Ours: Image-Conditioned Diffusion Xcube
== XCube 40
- Ours:
Image-Cenditioned
. Alignment Ditfusion 30
i
= MVDream ‘

= Latent NeRF

v
Texture
{

Geometry Plausibility 0

Model Size (GB) Training Time/100 Sampling steps (Sec)

(a) Holistic evaluation: XCube scores higher than a (b) Co-training consistently outperforms isolated
majority of models whereas our latent diffusion model training as Humanoid B demonstrations increase,
scores similarly with a majority of the other models achieving good success rates even in low-data regimes.
used

NVIDIA RTX 4090 GPU.In terms of size, our latent diffusion model occupies just 1.4 GB, sig-
nificantly smaller than the baseline XCube model, which is approximately 30 GB. This benefit
manifests itself in better storage and memory usage, making it more suitable for downstream tasks
like robotic grasp generation. Inference performance also a mjor benefit towards our model . For a
standard evaluation of 100 sampling steps, our model required an average of 6 seconds per object,
whereas XCube took about 30 seconds for the same task.

5.4 Pre-grasp Generation

Figure 4 shows some of the antipodal grasps on 3d assets generated from our model. We provide
an in-depth analysis of the quality of generated grasps in the appendix D.1. Note that our current
model only predicts grasps from one side of the asset, i.e. the side facing the camera. Furthermore,
our current approach doesn’t consider any semantic information, leading to generating inaccurate
grasps, as seen in the third and fourth object.

Figure 4: Generated Grasps on our generated 3d assets

6 Code Overview

As this is a from-scratch implementation, all of the code shared in the repository’s main directory
files is implemented by us. We reference latent diffusion open-source implementations provided by
OpenAl There are additional modules for evaluation and robotic grasping, which are built on top of
open-source repositories. Here we describe the most important parts of the code and refer the reader
to the appendix for a further discussion.

autoencoders.py (lines 1-148)
* Lines 8-42: vae_loss function that implements a weighted VAE loss suitable for sparse
voxel data
* Lines 45-123: AutoencoderKL3D class implementing a 3D variational autoencoder

— Lines 47-85: Encoder architecture with proper downsampling for 3D volumes
— Lines 87-114: Decoder architecture with upsampling to reconstruct 3D volumes
— Lines 116-122: Core VAE functions (encode, reparameterize, decode, forward)

train_diffusion.py (lines 1-488)

* Lines 8-24: loss_logger class for tracking training metrics

* Lines 27-45: encode and decode functions to interface between diffusion and VAE models
* Lines 48-145: train_one_epoch function implementing the diffusion model training loop

* Lines 147-195: val_one_epoch function for validation

* Lines 197-306: sample_N_images function for generating samples from the diffusion model

* Lines 308-488: Main training execution with model initialization, dataset loading, and
training loop

models.py (lines 1-1373)

* Lines 13-85: Core neural network building blocks (GroupNorm32, conv_nd, linear, etc.)
* Lines 86-106: timestep_embedding function for encoding diffusion timesteps
* Lines 107-155: checkpoint function and implementation for memory-efficient backprop

* Lines 188-225: TimestepBlock and TimestepEmbedSequential for conditioning on
timesteps

* Lines 226-277: Upsample and Downsample classes for multi-dimensional feature maps

* Lines 278-391: ResBlock class implementing residual blocks with timestep conditioning
* Lines 392-463: AttentionBlock class for self-attention in diffusion models

* Lines 464-544: QKVAttention implementations for efficient attention computation
 Lines 959-1221: UNetModel3D class implementing a 3D UNet architecture for diffusion

» Lines 1222-1373: Helper functions for creating UNet models of different sizes (UNet-
Big3D, UNet3D, UNetSmall3D)

7 Timeline

Table 1 provides details about how much time we spent on each part of the project.

Task Time Spent
Reading Related Works 10hrs to 12hrs
Reading XCube and Contact-Graspnet Documentation 2hrs to 3hrs
Setting up and running XCube and Contact-Graspnet locally | 4hrsto bhrs
Writing Latent-Diffusion Models from scratch 55hrs to 60hrs
Modifying Contact-Graspnet to our data format 4hrs to 6hrs
Running experiments for various ablations 10hrs to 12hrs
Compiling results 2hrsto 3hrs
Preparing Report 2hrs to 3hrs

Table 1: Time spent on various tasks

8 Research Log

8.1 From-scratch Development

The bulk of the time we spent on this project was spent in the development of our model imple-
mentation. We began early and incorporated elements from class lectures slowly and iteratively into
our model implementation for the 3d latent diffusion pipeline. Namely, we took inspiration from 2d
latent diffusion, and added another spatial dimension, which resulted in custom implementations of
everything from ResNet blocks, QK VAttention, cross attention blocks, transformer modules, relative
position embeddings, dataloaders, training architectures, and even custom voxel-based visualizers
(using matplotlib). Many of these improvements were built on quick training iterations using a toy
dataset of 3d digits to determine how well the model was learning, and what was lacking. We iter-
ated heavily on the architecture of the UNet model as well as the 3D variational autoencoder, testing
both lower dimensional latent spaces and 3D latent spaces. Through iterations, we landed on an
approach with 3D VAEs using attention, as other representations and model types did not learn well
enough from the small dataset we had to work with. Due to time and GPU memory limitations, we
could not scale up our model to full resolution as we originally planned in our proposal.

We also spent a lot of time setting up and using X-CUBE, as the dependencies used by X-CUBE are
particularly challenging to set up and use, including custom NVIDIA libraries that replace PyTorch.
We developed our own scripts to run inference using their codebase, so that we could port over
results for our evaluation.

8.2 Selecting Metric

Another major challenge in our project was identifying interpretable and reliable evaluation metrics
for assessing the quality of 3D assets generated from text prompts. Unlike traditional supervised
learning settings, the lack of ground truth 3D models corresponding to our prompts made it difficult
to find ways to apply standard metrics like PSNR or Chamfer Distance in a directly interpretable
way. This absence of reference data significantly complicated our efforts to benchmark our model’s
performance.

Initially, we explored multiple quantitative metrics, such as CLIP Score, FID with DINO features,
,and normal-map-based metrics for surface detail. However, these metrics had their own limita-
tions—some required ground truth geometry, while others, like CLIP Score, only assessed superfi-
cial text-to-shape alignment without capturing geometric plausibility or texture coherence.

We investigated 3DGen-Bench, which proposed 3DGen-Score as a comprehensive evaluation suite.
This seemed promising, as it provided a single model architecture able to comprehensively and quan-
titatively review the quality of 3d model architectures, potentially making the evaluation pipeline
very simple. However 3DGen-Score was available only as a compiled .pkl file with no open ac-
cess to the model architecture or training code, making integration and interpretation challenging.
Without transparency into the model’s behavior or inputs, its use as a black-box evaluator risked
undermining the reproducibility and reliability of our results.

Ultimately, we pivoted to using GPT-4V (ision)-based evaluation, as described in [Wu et al., CVPR
2024]. GPT-4V provided a scalable, human-aligned framework capable of performing pairwise
comparisons across similar model quality metrics to 3DGen-Bench like text-asset alignment, texture
detail, geometry detail, texture-geometry coherence, and 3D plausibility. What made GPT-4V es-
pecially compelling was its interpretability—each decision was accompanied by a natural-language
explanation, making the evaluation process both transparent and extensible. Additionally, since
GPT-4V relies on rendered views (RGB and normal maps) rather than full 3D data, it bypassed the
need for ground truth models entirely.

This shift not only allowed us to perform holistic model comparisons using Elo ratings but also
significantly streamlined our evaluation pipeline. It also helped bridge the gap between objective
and subjective quality assessments, aligning closely with human perception. Despite its reliance

on API access and probabilistic outputs, GPT-4V proved to be the most feasible and interpretable
option given our constraints.

In summary, the journey to find a suitable evaluation strategy was non-trivial and iterative. While
many traditional metrics fell short due to lack of ground truth, leveraging GPT-4V as a human-
aligned evaluator allowed us to overcome this fundamental bottleneck and conduct meaningful com-
parisons across generative models.

8.3 Pre-Grasp Generation

Finally, while selecting pre-grasp generation, we went through various models, but found out most
to be out-of-date and incompatible with the current nvidia-drivers. After trying models like Any-
DexGrasp, DexNet, and Contact-GraspNet, we narrowed down to Contact-GraspNet. Another major
issue while inferring current model on our generated 3d voxel grids arose due to a different scaling
method in the original dataset. We had to scale and shift our generated assets into the origin to obtain
meaningful pre-grasp candidates from the model.

9 Conclusion

We introduce a self-supervised framework to continuously improve pre-grasp generation quality
using 3D asset generation through a latent diffusion model. We ablate on various design architecture
choices as well as different evaluation metrics for both the 3d asset generation pipeline and the grasp
generation pipeline.

As future work:

We want to scale up the resolution and dataset size of our model to better compare with X-CUBE.
Furthermore, use native 3d sparse data structures to improve efficiency.

And on the aspect of pre-grasp generation, we want to add a self-supervised critic (e.g., collision
checker, grasp quality metric) to validate or rank generated grasps. Also, add semantic information
about the object to the model. Finally, confirm pre-grasp quality in simulation by producing force
perturbations and test it on real hardware.

References

[1] A. Ramesh et al. Hierarchical text-conditional image generation with clip latents.
arXiv:2204.06125, 2022.

[2] B. Poole et al. Dreamfusion: Text-to-3d using 2d diffusion. In arXiv:2209.14988, 2022.

[3] H. G. Singh, A. Loquercio, C. Sferrazza, J. Wu, H. Qi, P. Abbeel, and J. Malik. Hand-object
interaction pretraining from videos. arXiv preprint arXiv:2409.08273, 2024.

[4] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 652-660, 2017.

[5] C.R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[6] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022.

[7] M. Deitke, D. Schwenk, J. Salvador, L. Weihs, O. Michel, E. VanderBilt, L. Schmidt,
K. Ehsani, A. Kembhavi, and A. Farhadi. Objaverse: A universe of annotated 3d objects. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
13142-13153, 2023.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Blattmann, R. Rombach, H. Ling, T. Dockhorn, S. W. Kim, S. Fidler, and K. Kreis. Align
your latents: High-resolution video synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 22563-22575,
2023.

X. Ren, J. Huang, X. Zeng, K. Museth, S. Fidler, and F. Williams. Xcube: Large-scale 3d gen-
erative modeling using sparse voxel hierarchies. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4209-4219, 2024.

R. Chen, J. Zhang, Y. Liang, G. Luo, W. Li, J. Liu, X. Li, X. Long, J. Feng, and P. Tan.
Dora: Sampling and benchmarking for 3d shape variational auto-encoders. arXiv preprint
arXiv:2412.17808, 2024.

J. Xiang, Z. Lv, S. Xu, Y. Deng, R. Wang, B. Zhang, D. Chen, X. Tong, and J. Yang. Structured
3d latents for scalable and versatile 3d generation. arXiv preprint arXiv:2412.01506, 2024.

G. Metzer, E. Richardson, O. Patashnik, R. Giryes, and D. Cohen-Or. Latent-nerf for shape-
guided generation of 3d shapes and textures. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 12663-12673, 2023.

J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg. Dex-net 3.0: Computing robust
vacuum suction grasp targets in point clouds using a new analytic model and deep learning. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pages 5620-5627,
2018. doi:10.1109/ICRA.2018.8460887.

J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, K. Kohlhoff, T. Kroger,
J. Kuffner, and K. Goldberg. Dex-net 1.0: A cloud-based network of 3d objects for robust
grasp planning using a multi-armed bandit model with correlated rewards. In 2016 IEEE
International Conference on Robotics and Automation (ICRA), pages 1957-1964, 2016. doi:
10.1109/ICRA.2016.7487342.

J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-
net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics, 2017. URL https://arxiv.org/abs/1703.09312.

H.-S. Fang, C. Wang, M. Gou, and C. Lu. Graspnet-1billion: A large-scale benchmark for gen-
eral object grasping. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 11441-11450, 2020. doi:10.1109/CVPR42600.2020.01146.

P. Ni, W. Zhang, X. Zhu, and Q. Cao. Pointnet++ grasping: Learning an end-to-end spatial
grasp generation algorithm from sparse point clouds. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 3619-3625. IEEE, 2020.

M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof
grasp generation in cluttered scenes. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 13438-13444. IEEE, 2021.

10

http://dx.doi.org/10.1109/ICRA.2018.8460887
http://dx.doi.org/10.1109/ICRA.2016.7487342
http://dx.doi.org/10.1109/ICRA.2016.7487342
https://arxiv.org/abs/1703.09312
http://dx.doi.org/10.1109/CVPR42600.2020.01146

Figure 5: Objaverse Samples

A Background

Latent diffusion models or LDMs are a class of generative models that operate by learning a de-
noising process in a compressed latent space rather than pixel space, significantly reducing compu-
tational cost while preserving semantic fidelity [6]. Given an input data distribution z¢ ~ Pgan (),
an encoder £ maps inputs to a latent space: zo = £(xq). A forward diffusion process is then applied
to 2o by progressively adding Gaussian noise:

2t = Vagzo + V1 — aze, e ~N(0,1),

where {a;}7_; is a predefined variance schedule. The reverse process is modeled using a neural
network eg(z¢, t) trained to predict the added noise €, optimizing the variational objective:

Lompe = Exgct [l = oz, O]

Once trained, a decoder D reconstructs data via 2o ~ D(zg). We adopt this framework to generate
high-fidelity 3D object structures while amortizing the cost of operating in high-dimensional spaces.

B Detailed Description of Metrics

Attempting to evaluate generative models for 3D point clouds can pose to be challenging given that
there are no clear metrics widely used for this task. While some works use CLIP, this mainly only
checks for alignment between the generated image and the text prompt used to generate it, neglecting
other key qualities towards the quality of the generated 3D model. While human user studies are a
reasonable way to rate these arbitrary metrics, they are expensive and difficult to scale. To tackle
these challenges, we leverage the capabilities of GPT-4V.

B.1 Meta-Prompt

Firstly, we use a “meta-prompt” system using GPT-4V to generate diverse and customizable text
prompts, addressing the need for varied input prompts that reflect real-world user inputs and evalu-
ation focuses. These prompts are structured with components like subjects, properties, and compo-
sitions to enable controlled generation.

B.2 LLM-based Evaluation

Secondly, GPT-4V is employed as a 3D Assets Evaluator to compare pairs of 3D shapes generated
from the same text prompt. The 3D shapes are represented by 2D visual renderings (RGB and
normal images) to make them suitable for GPT-4V’s analysis. An instruction template guides GPT-
4V in the comparison process based on user-defined criteria. To enhance robustness, the evaluation
process uses an ensemble approach, where results from multiple perturbed inputs are combined. The
Elo rating system is then used to rank the text-to-3D models based on the pairwise comparisons. We
describe these metrics in more detail in section 5.

11

Sparse Structure VAE Hierarchical Voxel Latent Diftusion VAE Decoder Generated Hierarchy Mesh & Texture

2
{G2, Az}
% VAE Training Diffusion Sampling Process Next Level ... y

Figure 6: X-Cube

B.3 Grasping Metrics
For measuring grasp success, we adopt the Precision@k (top-k grasp accuracy), since each object
has multiple grasp predictions. A grasp is considered successful if it has more than a given threshold

of voxel grid between the grippers. Ideally, a grasp’s success should be measured in simulation by
applying random forces to the object, however that is beyond the scope of the project.

C Baseline Results

C.1 Model Architecture

Figure 8 depicts the model architecture for XCube.

C.2 Qualitative Analysis of X-CUBE

Prompts: Sofa, Polished oak chair

o

Prompts: Elephant, 3 bundled balloons

o

Prompts: Dog building with sand, rotary phone

The X-CUBE model outputs impressive results at a high level of detail, with strong prompt adher-
ence for simple prompts as demonstrated by the Sofa and Polished oak chair prompts. However,
the model starts to produce inaccuracies when sophisticated shapes with fine or thin details are
requested, such as the elephant or the bundled balloons. The model performs worst when request-
ing complex prompts with multiple objects or stylistic details, as demonstrated by the dog in sand
prompt and the fancy rotary phone prompt.

C.3 Further results from our image conditioned model

Figure 7 shows our image conditioning aspect of the model.

12

X-CUBE (Text input) Our model (Image input)

Image is generated using stable diffusion from text prompt

A chair made from
polished oak

An old-fashioned
rotary phone

Figure 7: Image and text conditioning

D Further Code Review

gaussian_diffusion.py (lines 1-151)

* Lines 7-57: GaussianDiffusion class implementing the diffusion process

— Lines 37-56: get_all_scalars method for computing diffusion schedule parameters
— Lines 58-68: sample_from_forward_process method for adding noise to the input
— Lines 70-151: sample_from_reverse_process method for generating samples by de-

noising
train_autoencoder.py (lines 1-271)

¢ Lines 6-48: Dataset and model initialization for the 3D VAE

* Lines 50-116: Main training loop with custom loss functions for sparse voxel reconstruc-
tion

* Lines 117-192: Training epoch implementation with BCE, KL, and color loss components

* Lines 194-271: Validation and model saving logic

test_diffusion.py (lines 1-65)

* Lines 10-22: Model loading and configuration
* Lines 24-37: Testing both the diffusion model and VAE

* Lines 39-65: Sample generation and visualization

test_autoencoder.py (lines 1-86)

* Lines 4-14: Helper functions for encoding and decoding with the VAE
* Lines 17-38: Model loading and testing code

13

* Lines 40-86: Testing code to evaluate reconstruction quality and visualization

utils.py (lines 1-527)

* Lines 5-17: calculate_psnr and calculate_struct_loss metrics for model evaluation
e Lines 19-58: visualize_batch function for rendering 2D batch data
* Lines 59-135: visualize_sequence function for creating animated visualizations

* Lines 137-215: visualize_voxel_array functions for 3D voxel visualization

Lines 216-303: visualize_voxel_array_cubes function for rendering 3D voxels as cubes

Lines 304-511: Advanced visualization functions with profiling and optimization

Lines 513-527: visualize_voxel_arrays function for rendering multiple 3D arrays

datasets.py (lines 1-333)

e Lines 5-35: Mnist2dDataset class for 2D MNIST data

* Lines 36-91: Mnist3dSeqDataset class for sequential 3D MNIST data

* Lines 92-188: Mnist3dSeqV3Dataset class for colored 3D MNIST with metadata
* Lines 190-254: get_metadata and get_dataset functions for dataset configuration

* Lines 270-275: Utility functions for loading model checkpoints

models_new.py (lines 1-2467)

* Lines 1-200: Improved core building blocks and updated attention mechanisms

* Lines 200-450: Enhanced 3D-specific operations and layer implementations

* Lines 450-800: Modified ResBlock and AttentionBlock implementations for 3D volumes

* Lines 800-1200: UNetModel3DS class with improved spatiotemporal processing capabili-
ties

* Lines 1200-1600: UNet4D and UNetBig4D models for handling 4D data (3D volumes +
time dimension)

* Lines 1600-2000: UNet3DS and specialized model variants for 3D sequence modeling

* Lines 2000-2467: Factory functions for creating models of different capacities and config-
urations

D.1 In-depth Analysis of Pre-grasp Quality

We measure the quality of the generated pre-grasps on three metrics -
1. Point density between grippers

2. Orientation between surface normal and grasp normal

3. Distance between surface and grasp

In the chosen metrics XCube outperforms our model and ablations significantly. This leads us to
the conclusion that the pre-grasp model finds it easier to generate grasps for dense point-clouds as
produced by XCube. However, our method can be trained much more quickly on a diverse variety
of objects, thus leading to a better performance during real-world deployment.

14

80

60

40

20

B Baseline [l Ours: base VAE [l Ours: VAE w/ mask learning
B Ours: Image-conditioned Diffusion

Point density between Surface normal- grasp Surface - grasp distance
grippers orientation

Figure 8: Qualitative Analysis of the generated pre-grasps

15

	Introduction
	Task and Dataset
	Task Description
	Dataset

	Related Work
	Latent Diffusion Models
	3D Reconstruction
	Grasp Synthesis

	Methods
	Baseline
	Our Method
	Model Architecture
	Text and Image Conditioning
	Text to Image to 3D
	Classifier-Free Guidance
	Sharp Edge Sampling (SES)
	Grasp synthesis

	Experiments
	VAE Ablations
	3D Asset Quality
	Inference Time and Model Size, Device used
	Pre-grasp Generation

	Code Overview
	Timeline
	Research Log
	From-scratch Development
	Selecting Metric
	Pre-Grasp Generation

	Conclusion
	Background
	Detailed Description of Metrics
	Meta-Prompt
	LLM-based Evaluation
	Grasping Metrics

	Baseline Results
	Model Architecture
	Qualitative Analysis of X-CUBE
	Further results from our image conditioned model

	Further Code Review
	In-depth Analysis of Pre-grasp Quality

